六六字典>历史百科>四库百科>勾股割圆记

勾股割圆记

三卷。清戴震(1724-1777)撰。戴震,字东原,安徽休宁人。1744年撰《策算》一卷。1752年开始跟江永(1681-1762)学算,1755年撰《勾股割圆记》三卷。1762年举人。1773年开四库馆,戴震参加校勘工作直至去世。《四库全书》子部天文算法类各书提要,多出自戴震手笔。为了整理和发掘中算古籍,戴震在明《永乐大典》中辑出《周髀》、《九章》、《孙子》、《海岛》、《五曹》、《夏侯阳》、《五经》等七部算经,并对《算经十书》进行校订,收入《四库全书》,撰《九章补图》附于《九章》每卷之后。还著有《准望简法》一卷,《割圆弧矢补论》一卷,《勾股割圆全义图》一卷,《方圆比例数表》一卷,均未刻传,手稿现藏北大。《勾股割圆记》三卷论述平面三角与球面三角问题,戴震自称:“终三篇,凡为图五十有五,为术四十有九,记二千四百十四字,因《周髀》首章之言衍而极之,以备步算之大全,六艺之逸简。”后来全文增加到2735字。上篇介绍三角八线和平三角形解法,中篇为球面直角三角形解法,下篇为球面斜三角形解法。其主要内容未超出梅文鼎《平三角举要》与《弧三角举要》的范围。又因戴震所述文字简括,所用术语过于生辟,故令读者难于理解其意义。清凌廷堪(1755-1809)评论道:“其所易新名,如角曰觚,边曰矩,切曰外矩,弦曰内矩,分割曰径引数,同式形之比例曰同限互权,皆不足异。最异者经纬倒置也。”(焦循《释弧》附录凌廷堪致焦循书)当代中算史家李俨写道:“戴震《勾股割圆记》三卷(1755),都照梅氏之说,就中《历象考成》所论深具条理,而《勾股割圆记》于余弦折半中数内加减符号,亦发折中之论,可是于薛凤祚所受诸式,尚未论及。”(《三角术和三角函数表的东来》,载《中算史论丛第三集》)《勾股割圆记》版本有1758年吴思孝序微波榭刊本,现藏北京图书馆与严敦杰处;《算经十书》本;《五礼通考观象授时》之内;《东原集》之内,无图,现藏浙江图书馆。

猜你喜欢

  • 化人游

    清丁耀亢(详见《表忠记》)撰。此剧共十出,写作者托言浙中士人何皋访道出游,成连导之入海。上仙如王阳、左慈、李白、杜甫、易牙、陆羽、西施、赵飞燕等人皆来会之,遂为之设宴,递饮射覆,极尽款洽,船行到弱水地

  • 罗山记

    一种。清罗泽南撰。罗泽南,号罗山,罗山人。其于修业之暇,时时眺览罗山,谓足以涤尘垢,宣抑郁,因撰此书。《罗山记》小方壶斋舆地丛钞本,为一种。其谓罗山曰,以群峰钩连,四面罗列,故名。又曰,山势远自西来,

  • 唐写卷子本说文解字残卷

    此残卷有九十四行,每行两篆。每篆分为三栏:上栏篆文,中栏音切,下栏说解。皆为木部,“祖”字起,“楬”字止,共一百八十八字。然首行两篆仅存“木”旁,十五行上下两篆全损,九十二、九十四两行古文“柙”字和篆

  • 车太常集

    一卷。晋车胤(?-401)撰。车胤,字武子,南平(湖南省兰山县东北)人。车胤少勤学,家贫无灯油,夏夜用绢囊装萤火虫照明读书。以博学知名,累官中书侍郎、侍中、领国子博士,隆安中迁吏部尚书。后被司马元显逼

  • 春秋考

    十六卷。宋叶梦得(详见《春秋传》)撰。叶梦得之治《春秋》,多有攻击三传者,而此书是旨在申明其所以攻击三传,只是根据周代法度典制以为断,并非自己所臆测。所以书中所言皆讨论周典,以求合于《春秋》之法。陈振

  • 四书私谈

    一卷。清徐春撰。徐春字可楼,江西宜黄(今江西宜黄)人。是书首有黄本骥序及春自序。黄序称是书“虽未尽合圣意,而新颖之思,警快之论,有可悦者”。自序称“私谈者何?避讲学之名也。世之讲学者,类皆窃宋儒之唾余

  • 碧香女史遗草

    一卷。清仲莲庆撰。仲莲庆,生卒年不详,字碧香,江苏泰州人,洪仁远之妻。清代诗人。此书有嘉庆十二年(1807)刻本。为《泰州仲氏闺秀合刻集》之一。内有其侄女仲振奎所作序言。共收诗四十一首。

  • 春秋应举辑要

    十二卷。清潘相(详见《周易尊翼》)撰。作者认为,明朝科举考试,《春秋》一经,最初采用胡安国、张洽二家之说,后来胡注单行,张注废弃不用。到清代《钦定春秋传说汇纂》与《御纂春秋直解》颁行学官,科举考试才有

  • 诗疑

    二卷。王柏(1197-1274)撰。王柏字会之,初号长啸,后改鲁斋。婺州金华(今属浙江)人。南宋经学家,朱熹三传弟子。宋理宗时为丽正、上蔡两书院师,后为国子祭酒。死后朝廷给予谥号文宪、列享两庑的褒扬。

  • 周氏玄通记

    见《冥通记》。